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J.  phys. Condens. Matter l(1989) 305-309. Printed in the UK 

LETTER TO THE EDITOR 

Theory of electron injection into one-dimensional 
conductors 

George Kirczenow 
Department of Physics. Simon Fraser University, Burnaby, British Columbia, Canada. 
V5A 1S6 

Received 10 October 1988 

Abstract. A quantum theory of electron injection from a reservoir of higher dimension into 
a semi-infinite one-dimensional (ID) conductor is presented. Numerical results are given for 
simple models of narrow quantum channels in semiconductor heterostructures. It is shown 
that the injection process can strongly influence experimentally measured ID conductances 
in ballistic or near-balhtic regimes. It should contribute in a major way to the observed 
deviations from perfect quantisation of the ID ballistic conductance. The possibility of 
resonances in the conductance of finite channels is briefly discussed. 

In recent years considerable interest has focused on one-dimensional (ID) electrical 
conduction in a variety of physical systems (see Landauer 1985, Imry 1986, Stone and 
Szafer 1988 for reviews). In most cases the transport being considered was controlled by 
scattering within the ID system. Because of this the quantum mechanics of electron 
injection from the physical reservoirs of higher dimensionality into the ID channel 
received scant attention, although the fundamental role of this process in ID transport 
experiments was not unrecognised. The remarkable, recent experimental studies of 
ballistic ID electrical conduction by van Wees et al(1988) and by Wharam et aZ(1988), 
where electrons were not scattered within the ID channel, raise the possibility of studying 
this injection process in some detail. In this Letter a theory of the injection process is 
presented which makes it possible to calculate its effects on the conductance of some 
simple models of ballistic ID channels. Numerical results are obtained which suggest that 
the iiijectioi; and emissi~:: precesses shou!c! be a major source of the experimentally 
observed deviations from perfect quantisation of the ID ballistic conductance. No satis- 
factory explanation of these deviations has previously been proposed. 

Perhaps the simplest way to understand the experimentally observed quantisation 
of the ID ballistic conductance is in terms of a Landauer-type argument (van Wees et a1 
1988, Wharam et all988). Its essentials can be summarised briefly as follows. Consider 
a ballistic channel running from left to right whose electronic structure can be described 
in terms of a set of ID sub-bands labelled by an index n and having an energy dispersion 
&kn. Assume, for the moment, that the sub-band states in which the electrons are moving 
to the left are filled up to an energy E and those moving to the right are filled to an energy 
E + eV, where V is the (small) potential difference across the channel. The current 
through the channel is then given by 

J = 2 evknDn(E)eV 
n 
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where the sum is over the occupied sub-bands, the density of states of sub-band n is 
D,(E) = g , / ( 2 i z d ~ ~ ~ / a k ) I ~ ~ ~ = ~ , g ~  is the spin degeneracy factor, and hvk, = d&,,,/ak. 
This yields a conductance 

G = J/V = g,e’/h 
n 

for the channel. For gs = 2 ,  and U sub-bands containing electrons 

G = 2ve2/h.  ( 2 )  

This result h2s been derived in several ways by van Wees et a1 (1988) and Wharam er a1 
(1988). Recently Johnston and Schweitzer (1988) obtained it as an exact result in linear 
response theory at T = 0 for a ID  channel of arbitrary length arranged in a closed loop, 
If the processes by which electrons are injected into the I D  channel and emitted from it 
are considered, the closed loop geometry of Johnston and Schweitzer (1988) cannot be 
used. The above simple argument also fails, because the assumption that the sub-band 
states in the energy interval (E, E + eV) are completely filled for electrons moving to 
the right and empty for electrons moving to the left is only approximately correct. The 
filling of these states is influenced by the processes which occur at the ends of the channel. 

To study quantitatively the effects of the injection process in its simplest form. 
consider a semi-infinite I D  channel (C) extending along the x axis for x > 0, and a 2~ or 
3~ electron reservoir (an ideal electron gas), filling the left half-space (L) for x < 0. An 
electron incident on the channel opening from the left will be injected or  reflected and 
the probabilities of these events will influence the electric current flowing in the channel. 
Let us assume that the channel is defined by apotential U ( y )  which confines the electrons 
to the vicinity of the x axis, where y stands for the coordinate(s) orthogonal to x. Thus 
the Hamiltonian for electrons in the channel will be 

H c  = -R2(a2/dx’ + Vi)/2m* + U ( y )  ( 3 )  

where m* is the effective mass. In the electron reservoir on the left, the Hamiltonian 
will be 

A Y L -  - -h’(a’/ax’ + Vt)/2m*. (4) 
Consider an electron incident on the channel from the left with a wavevector k = ( k ,  K )  
and energy E ~ ,  where k and K are the components of k parallel and transverse to the 
channel axis. In the reservoir its wavefunction is 

where qk(y) = eiKY; k’ = (2m*~,/h? - K’2)’;’ . The sum is over all transverse com- 
ponents K ’ ,  and the convention (-1)”‘ = -ti is used. This needs to be matched to the 
wavefunction of the electron in the channel which is of the form 

where q $ ( y )  is the nth transverse eigenstate of the confining potential U ( y )  satisfying 
H c q : ( y )  = ~,q:(y),  qn = [ 2 m ” ( ~ ,  - ~ ~ ) / h ’ ] ” ~ .  The sum is over all transverse 
levels M. 
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The electric current carried by ?$kin the channel can be written 
R 

( ? $ k l j X I V k )  = -(fie/m>') c q , a : x  
n 

(7 )  

ahere qn is as in (6), and the sum is over those ID sub-bands IZ for which q,? is real, since 
evanescent partial waves do not contribute to the current in an infinite channel. To 
evaluate this current, one can find the coefficients a: using the continuity of yk and 
apk/ax at x = 0. Equating ~JJ: and y: at x = 0. multiplying by q 4,(y)  and integrating 
WRT y yields 

a b  = -6QK + M-Qna: (8) 
I 1  

where 

MQ,7 = q~(yY)~ : (Y)  d y .  

Choosing q $ ( y )  to be real, the continuity of ay,/dx at x = 0 yields similarly that 

where k :  K ,  qn ,  and k' are as defined above. Using (8) to eliminate ak.  from (9), one 
finds 

(4,d,, + k ' M K ' m M - K , n  a$ = 2 k M K m .  
n K' i 

Equation (10) is a set of linear equations for the coefficients a: which describe the wave 
function qk in  the channel. Notice that in (18) the reflected and evanescent partial waves 
of y ,  in the electron reservoir have been eliminated exactly, greatly simplifying the 
problem. 

Expression (1) for the channel current should now be replaced by the current 
( ? $ k l j x ! V k )  given by (7), summed over all incident waves yk in an energy interval eV at 
the Fermi energy E,  of the reservoir. For ZD electron reservoirs, as in the experiments 
of van Wees et a1 (1988) and Wharam et a1 (1988), this yields an expression 

for the T = 0 conductance, replacing equation (2). Here a = (2mxEF/fi2)1/2, k = 

In order to see how the simple result ( 2 )  is modified by the effects of electron injection, 
it is necessary to solve the system of equations (10) and evaluate the conductance (11) 
numerically. This has been carried out for two models of the confining potential U ( y )  
which are frequently used in modelling channels in semiconductor heterostructures, 
namely, the parabolic potential U ( y )  = cy2 + Uo,  and the square-well potential U(y) = 
U. for lyl < W/2, U ( y )  = x for lyl > W/2. Here y is the coordinate orthogonal to x in 
the plane of the heterostructure; very strong out-of-plane confinement is assumed. 
According to the work of Laux et a1 (1988) the parabolic potential should be a good 
approximation for the narrowest channels, while square well may be more appropriate 
for wider ones. A numerical solution requires that the infinite system of equations (10) 

(2m"E,/h2 - K2)1'2. 
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Figure 1. Conductance G versus E for semi-infinite ballistic channels. Curve A: parabolic 
confinement with = 0. Curves B, C: square-well confinement with 0 = 0, 0 = E,/2 
respectively. Full curves: present theory. Dotted curves: ideal result (2) which does not 
include electron injection effects. Horizontal scale is for curve 3: curve A (C) is offset b) 
0.5 (1.0) to the left (right). Inset: see text. Ideal result (2) (dotted). semi-infinite channel as 
for curve B (broken curves), finite channel of length 5W (full curves). 

5 

be truncated. However, the convergence of G with increasing cutoff was very good and 
the numerical errors in the results presented here are negligible. 

The T = 0 conductance G for these potentials depends on two variables chosen here 
as the normalised 2DEG Fermi energy EF, and the normalised height of the potential step 
encountered by the electron on entering the constriction U .  For the square-well case let 
us define E, = EF/A and U = Uo/A, where A = h2/8m*W’ so that E, = n2A + U,. For 
parabolic confinement define 8, = EF/hw and U = Uo/hw,  with w = (2c/m*)”* and 
E ,  = (n  + 4)hw + U,. It is convenient to plot the conductance as a function of a dimen- 
sionless energy variable E which is chosen as E = (EF - I j ) l / *  for the square well and E = 
ZF - 0 for parabolic confinement. 

Some representative results are shown in figure 1. Curve A is for parabolic con- 
finement with 0 = 0. Curves B and C are for square-well confinement with U = 0 and 
U = &/2 respectively. The full curves are the present results for a semi-infinite channel, 
while the dotted curves show the ideal result (2) which does not include electron injection 
effects. The horizontal scale is for curve B; curve A (C) is offset by 0.5 (1.0) to the left 
(right) for clarity. It is clear that the quantisation of the conductance is not exact although 
it can be quite accurate in the plateau regions. The accuracy of the quantisation is lower 
for the higher plateaus, and it is also reduced for non-zero U,. It should be noted that cr 
is likely to decrease and the confining potential to become more square-well-like with 
increasing 5 (Laux et a1 1988), moderating this trend somewhat in the experimental 
systems. 

Qualitatively the present results, including the lower accuracy of quantisation for the 



Letter to the Editor 309 

higher plateaus, are in agreement with the experiments of van Wees ef a1 (1988) and 
Wharam eta1 (1988), however some potentially important effects have not been included 
here. Firstly, any residual scattering in the ballistic channel, including that caused by 
irregularities in the channel walls, will further reduce the accuracy of the quantisation 
2nd tend to smooth the 'corners' of the  curves shown in figure 1. Secondly, for afinite 
ballistic channel, the quantum mechanics of electron emission from the channel also 
needs to be  considered. This problem can be solved using similar techniques to those 
described above and will be addressed in detail elsewhere. Here only the main result 
will be indicated: the inset in figure 1 shows the lowest plateau of curve B magnified by 
a factor of 3. The  dotted curve is again The ideal conductance given by (2), the con- 
ductance of the semi-infinite channel is shown as a broken curve, and the full curve is 
the conductance calculated for a finite channel of length 5". The conductance of the 
finite channel oscillates about that for the semi-infinite channel caused by interference 
effects caused by multiple internal reflections of the electrons at the ends of the channel. 
An equivalent interpretation is that the peaks in the conductance occur when the Fermi 
energy of the 2D electron reservoirs matches the energies of longitudinal resonant 
electron states in the channel. 

In summary: the first quantitative theory of electron injection into a ID quantum 
channel has been presented. The theory can explain the experimentally observed devi- 
ations from perfect quantisation of the  ID ballistic conductance, and suggests that finite 
ballistic quantum channels may exhibit resonant conduction. 

1 would like to  thank E Castano and W M Que for helpful discussions. This work was 
supported by the Natural Sciences and Engineering Research Counci! of Canada. 
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